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Abstract
It is urgent to find the appropriate technology for the early detection of Alzheimer’s disease 
(AD) due to the unknown AD etiopathologies that bring about serious social problems. Early 
detection of mild cognitive impairment (MCI) has pivotal importance in delaying or preventing 
the AD onset. Herein, we utilize deep learning (DL) techniques for the purpose of multiclass 
classification between normal control, MCI, and AD subjects. We used multi-categorical 
data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) including brain imaging 
measurements, cognitive test results, cerebrospinal fluid measures, ApoE4 status, and age. We 
achieved an overall accuracy of 87.197% for our artificial neural network classifier and a similar 
overall accuracy of 88.275% for our 1D convolutional neural network classifier. We conclude 
that DL-based techniques are powerful tools in analyzing ADNI data although further method 
refinements are needed.

Introduction
Alzheimer’s disease (AD), also known as senile dementia, 

is the most common cause of dementia in the elderly. Although 
there is no current cure, research is ongoing for the development 
of new treatments. AD has pathologically and clinically unique 
characteristics. Post-mortem studies of AD have shown four 
typical lesions in AD brains: intraneuronal neurofibrillary 
tangles (NFTs), extracellular deposits of Aβ amyloid plaques, 
glial responses, and neuronal loss with synaptic loss [1,2]. As 
life expectancy increases, so does the risk for AD. In the United 
States alone, projections show the prevalence in individuals 
aged 65 years or older nearly tripling from 4.7 million in 2010 
to 13.8 million in 2050 [3]. In both developed or developing 
countries, the morbidity and mortality rates of dementia are 
both quickly growing. In China, for example, projections show 
prevalence quadrupling from 6 million in 2011 to 28 million 
in 2050 [4]. The disease causes increasingly serious economic 
burdens and social issues [5], making it one of humanity’s great 
challenges in the 21st century.

Methods have been proposed in the literature for providing 
an automatic tool that guides clinicians in diagnosing AD [6-14].  
In order to distinguish AD or mild cognitive impairment (MCI) 
subjects from normal control (NC) subjects, machine learning 

techniques have received some attention [15-17]. Deep learning 
(DL) is categorized under machine learning. It processes data in 
a fashion inspired by biological nervous systems and contains 
deep layers that are often hidden [18]. It is an exciting frontier 
of machine learning for learning data representations and is 
rapidly evolving as technology becomes increasingly capable of 
accommodating big data. DL has versatility of application across 
different contexts and types of data, including the utilization of 
AD data for diagnosis classification [19,20]. Artificial neural 
networks (ANNs), a DL model, process data in a fashion similar 
to the connections of neurons in the brain [21]. They have been 
applied in uniquely different classification tasks that have been 
useful for AD research [22-24]. ANNs utilize neuronal weights 
between nodes and make use of back-propagation and gradient 
descent over a series of training epochs. They are often applied 
on tables of data, of which the contents can be multi-categorical 
[22]. Different varieties of activation functions, which define the 
output of nodes within a neural network, include both sigmoidal 
and ReLU [25]. Convolutional neural networks (CNNs) are a 
subset of ANNs that are characterized by their convolution, 
which are often used for image recognition but can be used 
across a variety of different contexts as well [26-28].

In this manuscript, we propose a method of multiclass 
classification between NC, MCI, and AD patients using multi-

Keywords: Alzheimer’s Disease (AD); Mild Cognitive Impairment (MCI); Deep Learning (DL); Artificial Neural Networks 
(ANNs); Convolutional Neural Networks (CNNs); Alzheimer’s Disease Neuroimaging Initiative (ADNI)



Curr Neurobiol 2019 Volume 10 Issue 3

Deep learning-based classification of multi-categorical Alzheimer’s disease data

142

Procedure

ADNI data from a multi-categorical set was used to generate 
an ANN and 1D CNN capable of diagnosis. Table 1 includes 
data trained and tested against diagnosis (NC, MCI, and AD) 
data. Figure 1 contains a diagram of the brain regions included 
in our data set [31,32], all of which are located within the 
temporal lobe. Cerebrospinal fluid measures associated with 
AD were included [33,34] as well as cognitive tests results [35], 
ApoE4 status [36, 37], and age. Figure 2 contains MRI of an 
NC, MCI, and AD patient from the ADNI trials, demonstrating 
that the naked eye can have some difficulty differentiating 
between them.

R was used to extract the data the ADNI dataset and clean it 
for use in the neural network as well as for interpretation of the 
results. Brain region measurements were averaged between the 
left and right structures. Incomplete instances of subject data 
were not utilized. 19 total values per subject, as shown in Table 
1, were used and 3706 entries total were utilized. 1299 were 
NC (599 male, 630 female) patients, 1683 were MCI (1002 
male, 681 female) patients, and 794 were AD (407 male, 387 
female) patients. These entries represent different sessions in 
which none of the features were missing, meaning that some 
patients had their data used multiple times but from different 

categorical data using deep learning. We utilize both an ANN 
and a 1D CNN for this purpose. Our aim is to demonstrate the 
effectiveness of our multi-categorical data in classification as 
well as to compare ANNs with CNNs in this type of task. 

Materials and Methods
Experimental data

Data used in the preparation of this article were obtained 
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
database (adni.loni.usc.edu). The ADNI was launched in 2003 
as a public-private partnership, led by Principal Investigator 
Michael W. Weiner, MD. The primary goal of ADNI has been to 
test whether serial magnetic resonance imaging (MRI), positron 
emission tomography (PET), other biological markers, and both 
clinical and neuropsychological assessment can be combined to 
measure the progression of MCI and AD. 

ADNI initially planned to recruit 800 adults, ages 55-90, 
to participate in the research. Out of these 800 individuals, 
approximately 200 cognitively normal older individuals were 
to be followed for three years, 400 people with MCI were to be 
followed for three years, and 200 people with early AD were 
to be followed for two years [29]. Later on, these time periods 
were extended and more subjects were added [30].

Figure 1: Brain regions included in our dataset. This diagram utilizes MRI of a NC patient from the ADNI study. L, left; A, anterior; S, superior. The images are 
oriented in coronal, sagittal, and axial view.
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dates. There were 1093 unique subjects utilized, of which 352 
had been NC, 531 had been MCI, and 334 had been AD. Some 
of these subjects had transitioned from one diagnosis to another 
between sessions. The neural networks were built in Python 
using Theano, TensorFlow, and Keras libraries. The ANN was 
composed of an input and hidden layer with ReLU activation, 
followed by a second hidden layer with ReLU activation, 
followed by an output layer with Softmax [38] activation. The 
CNN was composed of a 1D convolutional layer with ReLU 
activation, followed by a max pooling layer [39] , followed 
by a flatten layer, followed by an output layer with Softmax 
activation. Both the ANN and CNN included 100 epochs, or 
training iterations. Internal validation occurred with 80% of 
entries being used for training and 20% being used for testing. 
We used R to interpret results. The framework of the method is 
shown in Figure 3.

Results
We achieved an overall accuracy of 87.197% for our ANN 

classifier, as demonstrated in Table 2, and a similar overall 
accuracy of 88.275% for our 1D CNN classifier, as demonstrated 
in Table 3. Each table lists the recall and precision for each class. 

These 3x3 confusion matrices are provided with precision and 
recall for each category of classification due to our multiclass 
classification, as opposed to binary disease classification, which 
can be represented by precision and recall for the disease class 
alone. This is effectively illustrative of the classification as a 
whole. 

AD and NC weren’t misclassified as each other, which 
is a positive indication of the ability of the classifiers. 
Misclassifications occur at the level of NC with MCI and MCI 
with AD. This is understandable because these are states that 
are far more similar to each other and are likely to have overlap. 
There is a transition that occurs from NC to MCI to AD and a 
patient transitioning to MCI from NC, for example, may resemble 
an MCI patient to the classifier. This may also be indicative of 
a combination of characteristics that a clinician may not be 
aware of but an algorithm could interpret from the data. Figure 
4 contains the accuracy and loss reported by Keras over each 
epoch during runs of the ANN and CNN. Both networks exhibit 
a similar drastic curve in the early epochs for gains in accuracy 
and reductions in loss, and then slowly become less and less 
drastic over the 100 epochs.  This represents the adaptations of 
the networks in their ability to classify throughout the epochs.

Figure 2: MRI of an NC, MCI, an AD patient. These are images of MRI scans from ADNI patients. L, left; A, anterior; S, superior. The images are oriented in coronal, sagittal, and 
axial view. 

Cognitive test results
CDR-SB ADAS 11 MMSE RAVLT (5 sum)
MRI volume, surface area, cortical thickness average, and cortical thickness standard deviation measurements

Parahippocampal gyrus Hippocampus
(Just Volume) Entorhinal cortex Middle temporal gyrus

Cerebrospinal fluid Measures
Amyloid-beta level in CSF Tau level Phosphorylated tau level
Risk Factors Associated with AD
ApoE4 Age

Table 1: Multi-categorical dataset.
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Classifier Results

Truth Data

NC MCI AD Classification 
Overall

Producer Accuracy 
(Precision)

NC 243 18 0 261 93.103%
MCI 25 288 37 350 82.286%
AD 0 15 116 131 88.550%

Truth Overall 268 321 153 742
User Accuracy 

(Recall) 90.672% 89.720% 75.817%

Table 2: ANN results.

Overall Accuracy: 87.197%, Kappa: 0.798

Classifier Results

Truth Data

NC MCI AD Classification 
Overall

Producer Accuracy 
(Precision)

NC 253 26 0 279 90.681%
MCI 15 272 23 310 87.742%
AD 0 23 130 153 84.967%

Truth Overall 268 321 153 742
User Accuracy 

(Recall) 94.403% 84.735% 84.967%

Table 3: CNN results.

Overall Accuracy: 88.275%, Kappa: 0.817

Figure 3: The steps of our process. We utilized data associated with AD, used R to generate a usable dataset, ran neural networks with Python on that dataset, then used R to interpret 
the results. 

Figure 4: Accuracy and Loss. Accuracy and loss over 100 epochs of our ANN and CNN as reported by Keras.
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Discussion 
We have demonstrated a successful multiclass classifier 

between NC, MCI, and AD subjects using multi-categorical 
data. Classification between all three diagnoses simultaneously 
using different types of data demonstrates the power of what 
deep learning is able to achieve. 

The 1D CNN achieved similar results as the ANN. This 
may be because of the nature of the data. CNNs typically 
excel in image recognition, which is why they are so useful 
in classification using 3D brain images [40,41]. 1D CNNs are 
useful in certain pattern recognition tasks [42] but may not be 
as useful in general datasets like the one we have implemented 
in this study. It performed well but didn’t excel far beyond 
our ANN. Variations on this experiment could include the 
utilization of different combinations of ADNI collected data. 
Limited data from imaging was used. As shown in table 1, a 
few measurements from a few regions of interest were utilized 
in our dataset. Perhaps some type of expansion on this section of 
our data could boost results significantly. If the whole 3D brain 
image was somehow incorporated with our other data, or simply 
more measurements from more brain regions, the results could 
potentially be better. Another interesting addition to the dataset 
could include different genetic data from ApoE4 status. 

Classification of a disease is often thought about from 
the perspective of utilizing a single category of data, such as 
imaging or genetics. Since AD is a polygenic, multifactorial 
complex disease, utilizing multiple categories may be 
necessary for optimal diagnosis. This may also be necessary 
in understanding AD before it develops. Developing classifiers 
like ours are important in better understanding the multipronged 
nature of the disease. We are hoping that experiments will 
continue of this nature thanks to ADNI’s collection of different 
forms of data from its patients. Resources like ADNI make 
data analysis using different methods on different variations 
of data from the same database possible. This study is also 
important in understanding the ways newer technologies such 
as DL can be useful for understanding AD. As software and 
hardware breakthroughs have provided increasingly efficient 
data processing, the scientific community’s ability to classify 
at higher accuracies has become more obtainable. This is all 
crucial in improving prevention and treatment of AD, as it becomes 
a growing concern in our society due to increasing life spans. 

Conclusions
In conclusion, we have presented a classifier capable of 

efficient three-way classification using carefully selected 
data that was predicted to yield the best results in the context 
of MCI and AD prediction. Our dataset included different 
categories of data including cognitive test results, brain imaging 
measurements, cerebrospinal fluid measures, ApoE4 status, and 
age. Our ANN and CNN performed very similarly.  Our results 
show that a well-selected set of data can yield powerful results 
using DL-based algorithms.
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